In Vitro Evaluation of 2D-Printed Edible Films for the Buccal Delivery of Diclofenac Sodium

Printing technologies have recently emerged in the development of novel drug delivery systems toward personalized medicine, to improve the performance of formulations, existing bioavailability patterns, and patients’ compliance. In the context of two-dimensional printing, this article presents the development of buccal films that are designed to efficiently deliver a class II compound (diclofenac sodium), according to the Biopharmaceutics Classification System (BCS), to the oral cavity. The preparation of drug-loaded inks was carried out based on solubility studies and evaluation of rheological properties, combining ethanol and propylene glycol as optimal solvents. Deposition of the drug was achieved by increasing the number of printing layers onto edible substrates, to produce formulations with dose variance. Thermal analysis, X-ray diffraction, and infrared spectroscopy were used to characterize the developed films. Drug loading and water uptake studies complemented the initial assessment of the films, and preliminary in vitro studies were conducted to further evaluate their performance. The in vitro release profiles were recorded in simulated saliva, presenting the complete release of the incorporated active in a period of 10 min.

The effect of multiple layers on the overall performance of films was completed with in vitro permeation studies, revealing the correlation between the number of printed layers and the apparent permeability coefficient.


Open Access by - Materials 2018, 11, 864; doi:10.3390/ma11050864 

In Vitro Evaluation of 2D-Printed Edible Films for the Buccal Delivery of Diclofenac Sodium
Materials 2018, 11, 864; doi:10.3390/ma11050864
In Vitro Evaluation of 2D-Printed Edible
Adobe Acrobat Document 3.0 MB
SEM micrographs of the upper and side surfaces of printed sugar sheets
Results of 2D-Printed Edible Films for the Buccal Delivery