Development of vildagliptin loaded Eudragit® microspheres by screening design

Abstract

The aim of this study was to develop and characterize sustained release vildagliptin (VLG) loaded Eudragit® RS-100 microspheres. The microspheres were prepared by single emulsion [oil-in-oil (O/O)] solvent evaporation method. Plackett–Burman design (PBD) was employed by using Design-Expert®Software to screen and understand impact of five independent formulation factors such as Eudragit® RS-100 (A), span-80 (B), acetone (C), methanol (D), stirring speed (E) affecting on encapsulation efficiency (EE) and dissolution rate (DR). The developed microspheres were evaluated by Field emission scanning electron microscopy (FE-SEM); particle size analyzer (PSA); Fourier transform infrared spectroscopy (FTIR); X-ray powder diffraction (XRD) and in-vitro drug release as well as microspheres were assessed for accelerated stability. The microspheres obtained were spherical in shape with non-porous surface and the mean particle size was 1.077 µm. FTIR and XRD study confirmed drug-polymer compatibility. EE obtained from all microspheres formulations was found in the range of 61.83–84.77%. 2D contour and 3D surface plots showed potential effects of independent factors on EE and DR. Sustained drug release profile (up to 12 h) was attained by Eudragit® RS100 polymer. Accelerated stability results for attributes like physical appearance and drug content did not showed any significant change over the period. Eudragit® RS-100 polymer could be used as favourable sustained release carrier in developing VLG loaded microspheres for the treatment of hyperglycemia to increase its duration of action.

More

You might also like