Preparation and investigation of controlled-release glipizide novel oral device with three-dimensional printing

 

Abstract

The purpose of this study was to explore the feasibility of combining fused deposition modeling (FDM) 3D printing technology with hot melt extrusion (HME) to fabricate a novel controlled-release drug delivery device. Glipizide used in the treatment of diabetes was selected as model drug, and was successfully loaded into commercial polyvinyl alcohol(PVA) filaments by HME method. The drug-loaded filaments were printed through a dual-nozzle 3D printer, and finally formed a double-chamber device composed by a tablet embedded within a larger tablet (DuoTablet), each chamber contains different contents of glipizide. The drug-loaded 3D printed device was evaluated for drug release under in-vitro dissolution condition, and we found the release profile fit Korsmeyer–Peppas release kinetics. With the double-chamber design, it is feasible to design either controlled drug release or delayed drug release behavior by reasonably arranging the concentration distribution of the drug in the device. The characteristics of the external layer performed main influence on the release profile of the internal compartment such as lag-time or rate of release. The results of this study suggest the potential of 3D printing to fabricate controlled-release drug delivery system containing multiple drug concentration distributions via hot melt extrusion method and specialized design configurations.

More

 

You might also like