The effect of mechanical strain on properties of lubricated tablets compacted at different pressures

A full factorial design of experiments was used to study the effect of blend shear strain on the compaction process, relative density and strength of pharmaceutical tablets. The powder blends were subjected to different shear strain levels (integral of shear rate with respect to time) using an ad hoc Couette shear cell. Tablets were compressed at different compaction forces using an instrumented compactor simulator, and compaction curves showing the force-displacement profiles during compaction were obtained. Although the die-fill blend porosity (initial porosity) and the minimum in-die tablet porosity (at maximum compaction) decreased significantly with shear strain, the final tablet porosity was surprisingly independent of shear strain. The increase in the in-die maximum compaction with shear strain was, in fact, compensated during post-compaction relaxation of the tables, which also increased significantly with shear strain. Therefore, tablet porosity alone was not sufficient to predict tablet tensile strength.

More

The effect of mechanical strain on properties of lubricated tablets compacted at different pressures

You might also like